
Simple Protocol for SRMs 
Protocol #4
Sep 26, 1990

For VME Local Station communications with the SRM arcnet nodes, a choice of protocol must 
be made. One can use an existing protocol already known to the Local Station, or one can 
invent a new one designed for the purpose. This option—called “#4” in our informal 
discussions due to the existence of support already for the Classic, D0 and Accelerator 
protocols—should be simple, or it would not be worth the effort. An idea for a suitable 
protocol is explored in this note.

As an aid to get started, assume we use the Acnet header as a basis for a simple protocol 
design. It is well-known around the accelerator division and provides for expandable and 
generic task-to-task communications. It allows both one-shot and repetitive replies to generic 
requests. For reference, its layout is repeated here:

src
lan

dst
lan

src
node

dst
node

flags msgType

status

srcTId

msgId

msgLng

dst 
task 
name

The msgType can be a Request, a Reply, or a USM (unsolicited message). The Request 
demands a reply. The USM demands no reply. The destination task name for a request or 
USM allows designing a large number of non-interfering protocols, since only the tasks 
involved in the communication must understand the protocol used in the rest of the message 
beyond the header. The source task id provides for routing the reply back to the requester. 
Multiple requests between tasks are distinguished by the msgId. The msgLng gives the entire 
message length including the Acnet header (18 bytes) itself. A flag bit in the msgType byte 
indicates whether a request expects a single reply or multiple replies. Network Layer 
software supports the use of the Acnet header to provide the task-to-task communications. A 
task connects to the network to announce its support for handling requests destined for a 
given destination task name and provides a message queue that enables it to receive such 
requests and any replies to its own requests. (Note that a task name is here not the same as a 
task name known to the operating system kernel.)

Additional items needed in a simple message protocol for data requests and settings are a 
message type (beyond the generic msgType mentioned above), a device index and either the 
#bytes of data requested or the setting data.



Consider the following layout for a data request and reply:

2x type

index

#bytes req'd

0x type

status

reply data

The value of “x” is the length of the index value. This would be 2 for channel or bit numbers 
and 4 for memory addresses. The type byte can denote analog data, binary status or memory 
data. The reply can include the same value used in the request.

Consider the following formats for a setting and its acknowledgment:

3x type

index

#bytes data

1x type

status

setting data

Again the “x” nibble gives the size of the index value. The #bytes of setting data is included 
in order to allow grouped settings. Without this consideration, it can be inferred from the 
msgLng word in the header.

Whether support for this simple protocol is worth the effort is yet to be decided.

Simple Protocol for SRMs p. 2


